Hydrogen peroxide (H2O2) is a widely used commodity chemical, it has a strong oxidizing capacity, and releases only water and oxygen upon its decomposition – no harmful compounds are formed. Industrial applications of H2O2 include wastewater treatment, bleaching, sanitation, chemical synthesis, and aerospace fuels.
The conventional production process of H2O2, presently operated in large-scale industrial units, is energy-intensive and causes substantial greenhouse gas emissions and the generation of problematic waste streams. Furthermore, the conventional process is optimized for centralized production in high volumes, while being much less suitable for small-scale application and a decentralized H2O2 supply in remote places, avoiding the necessity of transporting aqueous H2O2 solutions over long distances.
Based on air and water as only feedstocks, and driven only by renewable energy as the sole energy source, this new approach addresses an economically viable and green alternative to the classical energy-demanding anthraquinone oxidation (AO) process.
The EU-funded project Power2Hype develops a sustainable route for H2O2 production through a pioneering electrochemical process: cathodic oxygen reduction is paired with anodic water oxidation, enabling efficient H2O2 production in both half-cells. A downstream processing unit is developed and integrated with the electrolyzer, yielding highly concentrated H2O2 solutions. In Power2Hype, the entire process chain is demonstrated at technically relevant scale.
and optimise the cell components for large-scale electrochemical production of hydrogen peroxide.
develop and integrate a new electrochemical process and a corresponding reactor concept.
and demonstrate the innovative electrochemical process in a relevant operational environment.
the feasibility and sustainability of the new process from technical, environmental and (socio-)economic perspective.
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung
Wageningen University & Research
Friedrich-Alexander-Universitaet Erlangen-Nuernberg
DiaCCon
Energieinstitut an der Johannes Kepler Universitat Linz Verein
Solvay
Tecnicas Reunidas
SGL Fuel Cell Components GMBH
SolvGE B.V.
Globaz
Iris Technology Solutions